
Contents

Application Note

Document No.: AN1130

G32R501 Keil Linker Script Application Note

Version: V1.1

Document No.: AN1130

 www.geehy.com Page 1

 Introduction

In the MDK-ARM development environment, the linker script files (Linker Script) are used to

instruct the linker on how to map the code and data into the memory of the target

microcontroller. They are crucial in the development of G32R5xx series MCU, as they define

the layout of programs and data in different memory areas, ensuring that the code can run

correctly, and the memory resources can be effectively used.

This document explains and describes the usage of commonly used linker script files for the

G32R5xx series MCU development, for user reference.

Note: The above files are located in the following directory of G32R5xx_SDK:

G32R5xx_SDK_VERSION#/device_support/DEVICE_GPN/common/sct

Document No.: AN1130

 www.geehy.com Page 2

Contents

 Introduction .. 1

 Memory Allocation of G32R501 .. 3

 Memory Allocation of Each Linker Script File (Linker Script) ... 5

 Use Linker Script File (.sct) in MDK ... 6

 Create Linker Script Files (.sct) ..10

 Revision ..19

Document No.: AN1130

 www.geehy.com Page 3

 Memory Allocation of G32R501

Before using the linker script files, the corresponding memory allocation of each chip needs to

be understood. Some products of the G32R501 series MCU are configured with dual cores,

while others are configured with single core. The memory allocations under different

configurations are not the same. But they all have the following memory areas:

⚫ ITCM (Instruction Tightly Coupled Memory): Used to store instructions and provide high-

speed instruction execution. In single-core mode, CPU0 has a larger ITCM (64KB), while in

dual-core mode, the size of ITCM is 48KB (CPU0) and 8KB (CPU1).

⚫ DTCM (Data Tightly Coupled Memory): Used to store data and provide high-speed data

access. In single-core mode, CPU0 has 16KB DTCM, while in dual-core mode, the size of

DTCM is 16KB (CPU0) and 8KB (CPU1).

⚫ Flash: Non-volatile memory, used to store program code and static data. Either in single-

core or dual-core mode, the size of Flash is 640KB.

⚫ SRAM: Static random access memory, which can be used for general data storage. In both

single-core and dual-core modes, the base address and size of SRAM remain unchanged,

but in dual-core mode, it is necessary to ensure that the areas used by different cores do

not overlap.

The prerequisite for selecting appropriate linker script files for development is that users need to

understand the memory allocation of the target chip.

 Memory Allocation of G32R501 Single-core MCU

In single-core mode, CPU0 uses the following memory allocation:

Table 1 Memory Allocation of G32R501 Single-core MCU

Memory area Base address Size

ITCM RAM 0x00000000 64KB

DTCM RAM 0x20000000 16KB

Flash 0x08000000 (ITCM: 0x00100000) 640KB

SRAM1 0x20100000 8KB

SRAM2 0x20200000 8KB

SRAM3 0x20300000 32KB

 Memory Allocation of G32R501 Dual-core MCU

In dual-core mode, CPU0 and CPU1 share some memory areas, but they also have their own

dedicated memory areas:

Document No.: AN1130

 www.geehy.com Page 4

Table 2 Memory Allocation of G32R501 Dual-core MCU

Memory area Base address Size Remarks

ITCM RAM (CPU0) 0x00000000 48KB ITCM of CPU0

ITCM RAM (CPU1) 0x00000000 8KB ITCM of CPU1

DTCM RAM (CPU0) 0x20000000 16KB DTCM of CPU0

DTCM RAM (CPU1) 0x20000000 8KB DTCM of CPU1

Flash 0x08000000 (ITCM: 0x00100000) 640KB Shared Flash

SRAM1 0x20100000 8KB Shared SRAM1

SRAM2 0x20200000 8KB Shared SRAM2

SRAM3 0x20300000 32KB Shared SRAM3

Document No.: AN1130

 www.geehy.com Page 5

 Memory Allocation of Each Linker Script File (Linker

Script)

As described in Chapter 2, the memory structures of G32R501 series MCU are different, and

the memory allocations in single-core and dual-core modes are also different. Therefore, it is

necessary to create different linker script files based on specific scenarios and requirements to

optimize system performance and memory utilization.

This chapter provides a brief description of memory allocation and purpose of linker script files.

The table below explains some selected important .sct files. For other .sct files that are not

exemplified in the SDK, refer to the explanations in the table below.

Table 3 List of .sct Files in SDK (excerpt)

No. File name Description

1 g32r501dxy_cpu0_cbus_flash.sct
Code running and download location: 0x08000000, using

CBUS interface

2 g32r501dxy_cpu0_itcm_flash.sct
Code running and download location: 0x00100000, using

ITCM interface

3 g32r501dxy_cpu1_cbus_flash.sct
Code running and download location: 0x08040000, using

CBUS interface

4 g32r501dxy_cpu1_itcm_flash.sct
Code running and download location: 0x00140000, using

ITCM interface

5 g32r501dxy_cpu0_cbus_flash_secure.sct Secure boot .sct example file for dual-core CPU0

6 g32r501dxy_cpu1_cbus_flash_secure.sct Secure boot .sct example file for dual-core CPU1

7 g32r501dxy_cpu0_itcm_ram.sct
Code running and download location: 0x00000000, using

ITCM interface

8 g32r501xc_cbus_flash.sct
Code running and download location: 0x08000000, using

CBUS interface

9 g32r501xc_itcm_flash.sct
Code running and download location: 0x08000000, using

CBUS interface

10 g32r501xy_cbus_flash.sct
Code running and download location: 0x08000000, using

CBUS interface

11 g32r501xy_cbus_flash_secure.sct Single-core Secure boot .sct example file

12 g32r501xy_itcm_flash.sct
Code running and download location: 0x00100000, using

ITCM interface

13 g32r501xy_itcm_ram.sct
Code running and download location: 0x00000000, using

ITCM interface

Document No.: AN1130

 www.geehy.com Page 6

 Use Linker Script File (.sct) in MDK

In the MDK development environment, using linker script files (.sct) can effectively manage and

configure the memory layout of MCU. The steps and detailed description on how to select and

customize linker script files in MDK are provided below.

 Select Linker Script Files (.sct)

After copying the "*.sct" file to the MDK project, use the file in the project according to the steps

below.

1. Open MDK project: Enter the MDK project.

2. Enter the project settings window: Click the "Project" in the menu bar or directly select

"Options for Target" from the toolbar.

3. Select the "Linker" tab: In the opened project settings window, switch to the "Linker" tab.

4. Select the "..." option: In the file selection box that pops up in " …", click the browse button

to select the corresponding "*.sct" file.

5. Select the "Edit" option: The selected "*.sct" files can be edited.

6. Save configuration: Click the "OK" button.

Figure 1 How to Select or Edit "*.sct" Files

 Custom Configuration

After the "*.sct" file is selected, the following custom configuration can be set in the

Configuration Wizard window to meet specific requirements.

Document No.: AN1130

 www.geehy.com Page 7

Figure 2 Select Configuration Wizard Editing Window

Figure 3 Configuration Wizard Editing Window

Document No.: AN1130

 www.geehy.com Page 8

4.2.1 SRAM configuration

Different SRAM areas can be enabled or disabled in the configuration.

⚫ SRAM1: Configure the base address and size, with a typical size of 8KB .

⚫ SRAM2: Configure the base address and size, with a typical size of 8KB.

⚫ SRAM3: Configure the base address and size, with a typical size of 32KB.

Note: To avoid memory conflicts, users must ensure that the SRAM regions used by different cores do not overlap in

dual-core mode.

Figure 4 Enable or Disable Different SRAM Areas

4.2.2 Stack/Heap Configuration

The size and location of the stack and heap (DTCM, SRAM1, SRAM2, or SRAM3) can be set in

this configuration.

⚫ Default stack location: By default, the stack is stored in the DTCM of the chip.

Figure 5 Setting the Size and Location of the Stack and Heap

Note: The data accessed by DMA should not be placed in DTCM, but should be placed in a separate area such as

dma_data segment, and be stored in other locations (SRAM1, SRAM2, SRAM3).

4.2.3 Code execution area configuration

The execution area (Flash, SRAM, ITCM, DTCM, or custom address) of the code can be

selected in this configuration. If choosing to customize address, users must verify the validity of

the configured region content.

Code execution area options:

Document No.: AN1130

 www.geehy.com Page 9

⚫ Flash: The default code storage and execution area.

⚫ SRAM: SRAM1, SRAM2, or SRAM3 can be selected as the code execution area to

improve execution speed.

⚫ ITCM: Used to store critical code to provide faster execution speed.

⚫ DTCM: Used for storing data to provide fast data access.

⚫ Custom address: Users can manually set the code execution area.

Figure 6 Selecting Execution Area of the Code

Note: After modification, click “Save” to save the configuration. Changes will take effect upon the next compilation.

Document No.: AN1130

 www.geehy.com Page 10

 Create Linker Script Files (.sct)

Users can create linker script files (.sct) suitable for projects based on the MDK-ARM linker

script file (.sct) format. For more information, see the format requirements for the MDK-ARM

linker script files (.sct) and the content about memory allocation of G32R501 in Chapter 2.

 Syntax Rules of Scatter Files

A scatter file contains one or more load regions. Each load region can contain one or more

execution regions. An example is as follows:

;Load Region1

LOAD_ROM_1 0x0000

{

 ;Execution Region1

 EXEC_ROM_1 0x0000

 {

 ;Input Section1

 program1.o (+RO)

 }

 ;Execution Region2

 DRAM 0x18000 0x8000

 {

 ;Input Section2

 program1.o (+RW,+ZI)

 }

}

⚫ Load Region:

The standard form of a load region is:

// Items in brackets are optional

LoadRegionName (BaseAddress | ("+" AddressOffset(+<offset>))) [AttributeList] [MaxSize]

Document No.: AN1130

 www.geehy.com Page 11

{

 ExecutionRegion

}

- LoadRegionName: Used by the linker to identify different load regions.

- BaseAddress: Specifies the start address of codes and data in the load region.

Address offset is optional and must meet alignment requirements. <offset> represents

the address located <offset> bytes after the end of the previous load region. If this is

the first load region, the start address does not depend on any previous load region.

<offset> indicates that the base address is located <offset> bytes from zero.

- Attributes: Specifies the properties of the load region. Common attributes include:

ABSOLUTE---------------------------------- Absolute address (default)

ALIGN <alignment>------------------------ Address alignment

NOCOMPRESS---------------------------- Specifies that the content of this load region is

not compressed in the image file

- MaxSize: Specifies the maximum size of the load region. If the allocated size exceeds

max_size, armlink will generate an error.

⚫ ExecutionRegion:

The standard form is:

// Items in brackets are optional

ExecutionRegionName (BaseAddress | ("+"AddressOffset (+<offset>))) [Attributes] [MaxSize | <length>]

{

 InputSections

}

- ExecutionRegionName: Used by the linker to identify different execution regions.

- BaseAddress: Similar to load region.

- Attributes: Specify the attributes of the load region. Common attributes include:

ABSOLUTE----------------------------------Absolute address (default)

ALIGN <alignment>------------------------Address alignment

NOCOMPRESS----------------------------Specify that the content of a load region is not

Document No.: AN1130

 www.geehy.com Page 12

compressed in the image file.

EMPTY [-]<length>------------------------ Reserves an empty memory block of given size

in the execution region, typically used by stack. Sections selectors cannot be placed in

regions with EMPTY attribute. <length> indicates downward growing stack size. If length is

negative, <base_address> is considered as the end address of the region.

- MaxSize: Similar to load region.

⚫ InputSections:

The standard form is:

Input Section Description

Common forms:

Module Selector (+Input Section Attributes)

Module Selector (Input Symbol Style)

Module Selector (Input Section Style)

⚫ Module Selector:

- Wildcard character "*" and .ANY can be used, where .ANY selects all .o and .lib files

but with lowest priority.

- Using ".o" selects all .o files.

- Using ".lib" selects all .lib files.

⚫ Input Section Attributes: Can add input section attributes after the module selector. Each

attribute descriptor is added with "+", separated by space or comma, for

example, .ANY(+RO +ZI).

Table 4 Attribute Descriptions

Attribute Descriptor Description

RO-CODE/CODE Read-only code segment

RO-DATA/CONST Read-only data segment

RO/TEXT RO-CODE+ RO-DATA

RW-CODE Readable and writable code segment

RW-DATA Readable and writable code segment

RW/DATA RW-CODE+ RW-DATA

XO Executable-only region

ZI/BSS Zero-initialized readable and writable data segment

ENTRY Section entry

Document No.: AN1130

 www.geehy.com Page 13

Additionally, the following pseudo attributes are recognized:

- FIRST.

- LAST.

⚫ Input Symbol Style: Select the input section by symbols. Symbol style needs be modified

using the ":gdef:" prefix.

⚫ Input Section Style: The input section style can be used to select and control specific

sections.

- For example, InRoot$$Sections: Used to define symbols for specific sections to place

some sections into specific memory regions.

- RESET: Usually defines the program reset vector where the processor jumps to

execute the startup code upon power-on or reset.

 Application Scenario Modification Examples

5.2.1 Using Custom Linker Macros

In the file g32r501.h, macros are defined to control the memory layout of SDK code, as shown

in the following figure:

Figure 7 Custom Linker Macros

Table 5 Custom Linker Section Base Addresses

Specific section name Link base address

itcm.instruction ITCM(0x00000000)

itcm.ramfunc ITCM(0x00000000)

dtcm.data DTCM(0x20000000)

dtcm.bss DTCM(0x20000000)

sram1.share_data SRAM1(0x20000000)

sram2.share_data SRAM2(0x20200000)

sram3.share_data SRAM3(0x20300000)

Document No.: AN1130

 www.geehy.com Page 14

Users can specify the locations of functions and variables in ITCM, DTCM, and SRAM by using

macros in g32r501.h. If these macros do not meet requirements, users can refer to the following

examples to write custom linker script files (.sct) and add custom linker sections.

5.2.2 Specifying Function and Variable Link Regions

Example 1: Place variable Data_Ex in DTCM

⚫ Determine the memory region to store the function or variable:

- Data_Ex-------0x20000000 – 0x2000C000(DTCM)

⚫ Add a new input section in the specified memory region:

- Add a new input section to the execution region belonging to DTCM, custom section

name is data.ex

RW_RAM_CPU0_DTCM __CPU0_DTCM_BASE __CPU0_DTCM_SIZE {

;Newly added input section

.ANY (data.ex)

.ANY (+RW +ZI)

}

⚫ For implementation, control by using__attribute__((section("xxx")))

__attribute__((section("data.ex ")))

uint32_t Data_Ex;

5.2.3 Specifying Function and Variable Link Addresses

Users may need to place certain functions or variables at specific addresses during application

development. Keil generally provides two methods, with details listed below.

Example 2: Place variable Data_Ex at address 0x20300000

⚫ Method 1: For implementation, control by using__attribute__((__used__,

section(".ARM.__at_0x20300000"))).

__attribute__((__used__, section(".ARM.__at_0x20300000")))

const uint32_t Data_Ex;

Note: This method can only be applied to read-only variables qualified with the const keyword. If it is applied to

readable and writable variables, a warning will be generated.

Document No.: AN1130

 www.geehy.com Page 15

⚫ Method 2: Modify the .sct file. Specify the storage address through the .sct file.

- First modify the .sct file by defining a custom execution region, setting the start

address to the specific address where the user needs to link the variable. Then, customize

an input section name.

RW_RAM 0x20001000 0x400 {

;Newly added input section

.ANY (data.ex)

}

- For implementation, __attribute__((section("xxx"))) can be used to control the linking of

variables to the newly added execution region specified in the linker script (.sct) file.

__attribute__((section("data.ex ")))

uint32_t Data_Ex;

By following the methods listed above, the variables can be linked to the specified addresses.

5.2.4 Application Partitioning Regions

To achieve better memory management and performance optimization, partitioning the

application into regions using scatter loading is an important strategy.

Example:

#define __RO_BASE __CPU0_ROM_BASE

#define __RO_SIZE __CPU0_ROM_SIZE

#define __CPU0_ROM_BASE __CPU0_CBUS_FLASH_BASE

#define __CPU0_ROM_SIZE __CPU0_CBUS_FLASH_SIZE

#define __CPU0_CBUS_FLASH_BASE 0x08000000

#define __CPU0_CBUS_FLASH_SIZE 0x00050000 // 320KB

#define __SRAM3_BASE 0x20300000

#define __SRAM3_SIZE 0x00008000 // __SRAM3_SIZE,32KB

#define __SRAM1_BASE 0x20100000

#define __SRAM1_SIZE 0x00002000 // __SRAM1_SIZE,8KB

Document No.: AN1130

 www.geehy.com Page 16

#define __CPU0_DTCM_BASE 0x20000000

#define __CPU0_DTCM_SIZE 0x00004000 // 16KB

LR_ROM __RO_BASE __RO_SIZE {

 ER_ROM __RO_BASE __RO_SIZE {

 *.o (RESET, +First)

 *(InRoot$$Sections)

 .ANY (+RO)

 .ANY (+XO)

 }

 RW_RAM_CPU0_DTCM __CPU0_DTCM_BASE __CPU0_DTCM_SIZE {

 .ANY (dtcm.data)

 .ANY (dtcm.bss)

 .ANY (+RW +ZI)

 }

 RW_RAM_SRAM1 __SRAM1_BASE __SRAM1_SIZE {

 .ANY (sram1.share_data)

 .ANY (+RW +ZI)

 }

}

LR_ROM_SRAM3 __SRAM3_BASE __SRAM3_SIZE {

 ER_ROM_SRAM3 __SRAM3_BASE __SRAM3_SIZE {

.ANY (+CONST)

.ANY (share.data)

 }

}

This linker script structure clearly defines two load regions for storing constant data and read-

only code respectively.

⚫ The memory region LR_ROM_SRAM3 starts at __SRAM3_BASE with size

__SRAM3_SIZE, usually used for specific read-only data.

⚫ LR_ROM __RO_BASE __RO_SIZE defines a read-only memory region named LR_ROM,

starting at __RO_BASE with size __RO_SIZE.

5.2.4.1 Dual-core Example Link Files

The dual-core example .sct files are located in the SDK\device_support\g32r501\common\sct

Document No.: AN1130

 www.geehy.com Page 17

directory:

⚫ g32r501dxy_cpu0_cbus_flash.sct

⚫ g32r501dxy_cpu1_cbus_flash.sct

In dual-core example files, the Flash is split into two parts. If the user needs to modify the Flash

size allocation for the two cores, simply modify the macro definitions in the example files.

Example: Modify CPU0's Flash size to 384KB and CPU1's Flash size to 256KB

// Define the size of CBUS and ITCM Flash for CPU0/CPU1

#define __CPU0_CBUS_FLASH_BASE 0x08000000

#define __CPU0_CBUS_FLASH_SIZE 0x00060000 // Modification, 384KB

#define __CPU1_CBUS_FLASH_BASE 0x08060000 // Modification

#define __CPU1_CBUS_FLASH_SIZE 0x00040000 // Modification, 256KB

#define __CPU0_ITCM_FLASH_BASE 0x0

#define __CPU0_ITCM_FLASH_SIZE 0x0

#define __CPU1_ITCM_FLASH_BASE 0x0

#define __CPU1_ITCM_FLASH_SIZE 0x0

#define __CPU0_ROM_BASE __CPU0_CBUS_FLASH_BASE

#define __CPU0_ROM_SIZE __CPU0_CBUS_FLASH_SIZE

#define __CPU1_ROM_BASE __CPU1_CBUS_FLASH_BASE

#define __CPU1_ROM_SIZE __CPU1_CBUS_FLASH_SIZE

5.2.4.2 Secure Boot Example Link Files

For scenarios where data read by CPU from Flash must not be encrypted. When designing the

secure boot example .sct file, read-only data needs to be separated. This helps users clearly

know where the Flash region stores the read-only data and ensures that this region is not set

with encryption permissions.

The dual-core example .sct file is located at

SDK\device_support\g32r501\common\sct\g32r501dxy_cpu0_cbus_flash_secure.sct. Users

can refer to this file for specific design on how to separate CPU read data in Flash.

In this file, the non-encryptable region by default starts at address 0x08050000. If the user

Document No.: AN1130

 www.geehy.com Page 18

needs to modify this region, just change the start address macro definition in the

g32r501dxy_cpu0_cbus_flash_secure.sct file.

For example, modify the start address and size of the region where encryption is not allowed.

The .sct file provided by the SDK has a default start address of 0x08050000 and a size of

64KB, which are changed to 0x08020000 and 128KB respectively.

// Define the size of ITCM and DTCM RAM for CPU0

#define __CPU0_ITCM_BASE 0x00000000

#define __CPU0_ITCM_SIZE 0x0000C000 // 48KB

#define __CPU0_DTCM_BASE 0x20000000

#define __CPU0_DTCM_SIZE 0x00004000 // 16KB

// Define the size of CBUS and ITCM secure Flash for CPU0,

// This area allows users to be set with encryption permissions.

#define __CPU0_CBUS_FLASH_SECURE_BASE 0x08000000

#define __CPU0_CBUS_FLASH_SECURE_SIZE 0x00020000 // 128KB

#define __CPU0_ITCM_FLASH_SECURE_BASE 0x0

#define __CPU0_ITCM_FLASH_SECURE_SIZE 0x0

// Define the size of CBUS and ITCM unsecure Flash for CPU0,

// This area does not allow users to be set with encryption permissions.

#define __CPU0_CBUS_FLASH_UNSECURE_BASE 0x08020000 // Non-encryptable

region modified to 0x08020000

#define __CPU0_CBUS_FLASH_UNSECURE_SIZE 0x00020000 // 128KB

#define __CPU0_ITCM_FLASH_UNSECURE_BASE 0x0

#define __CPU0_ITCM_FLASH_UNSECURE_SIZE 0x0

// Define the size of CBUS Flash for CPU1

#define __CPU1_CBUS_FLASH_BASE 0x08060000

#define __CPU1_CBUS_FLASH_SIZE 0x00040000 // 256KB

Document No.: AN1130

 www.geehy.com Page 19

 Revision

Table 6 Document Revision History

Date Version Change History

January 2025 1.0 New

April 2025 1.1 Add descriptions of the syntax rules for the scatter file.

Document No.: AN1130

 www.geehy.com Page 20

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter

referred to as “Geehy”). The contents in this document are protected by laws and regulations of

trademark, copyright and software copyright. Geehy reserves the right to make corrections and

modifications to this document at any time. Read this document carefully before using Geehy

products. Once you use the Geehy product, it means that you (hereinafter referred to as the

“users”) have known and accepted all the contents of this document. Users shall use the Geehy

product in accordance with relevant laws and regulations and the requirements of this

document.

1. Ownership

This document can only be used in connection with the corresponding chip products or

software products provided by Geehy. Without the prior permission of Geehy, no unit or

individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this

document for any reason or in any form.

The “极海” or “Geehy” words or graphics with “®” or “TM” in this document are trademarks

of Geehy. Other product or service names displayed on Geehy products are the property of

their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users

explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party’s products, services or intellectual property are involved in this document,

it shall not be deemed that Geehy authorizes users to use the aforesaid third party’s products,

services or intellectual property. Any information regarding the application of the product, Geehy

hereby disclaims any and all warranties and liabilities of any kind, including without limitation

warranties of non-infringement of intellectual property rights of any third party, unless otherwise

agreed in sales order or sales contract.

3. Version Update

Document No.: AN1130

 www.geehy.com Page 21

Users can obtain the latest document of the corresponding models when ordering Geehy

products.

If the contents in this document are inconsistent with Geehy products, the agreement in the

sales order or the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or

cooperative third-party testing organization. However, clerical errors in correction or errors

caused by differences in testing environment may occur inevitably. Therefore, users should

understand that Geehy does not bear any responsibility for such errors that may occur in this

document. The relevant data in this document are only used to guide users as performance

parameter reference and do not constitute Geehy’s guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and

effectively verify and test the applicability of Geehy products to confirm that Geehy products

meet their own needs, corresponding standards, safety or other reliability requirements. If

losses are caused to users due to user’s failure to fully verify and test Geehy products, Geehy

will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN

USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL

UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-

EXPORT OR OTHER LAWS OF THE COUNTRIES OF THE PRODUCTS SUPPLIERS,

GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF,

SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE

BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF

GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO

THE EXTENT PERMITTED BY APPLICABLE LAW.

Document No.: AN1130

 www.geehy.com Page 22

GEEHY'S PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED FOR

USE AS CRITICAL COMPONENTS IN MILITARY, LIFE-SUPPORT, POLLUTION CONTROL,

OR HAZARDOUS SUBSTANCES MANAGEMENT SYSTEMS, NOR WHERE FAILURE

COULD RESULT IN INJURY, DEATH, PROPERTY OR ENVIRONMENTAL DAMAGE.

IF THE PRODUCT IS NOT LABELED AS "AUTOMOTIVE GRADE," IT SHOULD NOT BE

CONSIDERED SUITABLE FOR AUTOMOTIVE APPLICATIONS. GEEHY ASSUMES NO

LIABILITY FOR THE USE BEYOND ITS SPECIFICATIONS OR GUIDELINES.

THE USER SHOULD ENSURE THAT THE APPLICATION OF THE PRODUCTS

COMPLIES WITH ALL RELEVANT STANDARDS, INCLUDING BUT NOT LIMITED TO

SAFETY, INFORMATION SECURITY, AND ENVIRONMENTAL REQUIREMENTS. THE USER

ASSUMES FULL RESPONSIBILITY FOR THE SELECTION AND USE OF GEEHY

PRODUCTS. GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING

FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDES THE DOCUMENT AND

PRODUCTS "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE DOCUMENT AND PRODUCTS (INCLUDING BUT NOT LIMITED TO

LOSSES OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY USERS OR THIRD PARTIES). THIS COVERS POTENTIAL DAMAGES TO PERSONAL

SAFETY, PROPERTY, OR THE ENVIRONMENT, FOR WHICH GEEHY WILL NOT BE

RESPONSIBLE.

8. Scope of Application

The information in this document replaces the information provided in all previous versions

of the document.

© 2025 Geehy Semiconductor Co., Ltd. - All Rights Reserved

	1 Introduction
	2 Memory Allocation of G32R501
	2.1 Memory Allocation of G32R501 Single-core MCU
	2.2 Memory Allocation of G32R501 Dual-core MCU

	3 Memory Allocation of Each Linker Script File (Linker Script)
	4 Use Linker Script File (.sct) in MDK
	4.1 Select Linker Script Files (.sct)
	4.2 Custom Configuration
	4.2.1 SRAM configuration
	4.2.2 Stack/Heap Configuration
	4.2.3 Code execution area configuration

	5 Create Linker Script Files (.sct)
	5.1 Syntax Rules of Scatter Files
	5.2 Application Scenario Modification Examples
	5.2.1 Using Custom Linker Macros
	5.2.2 Specifying Function and Variable Link Regions
	5.2.3 Specifying Function and Variable Link Addresses
	5.2.4 Application Partitioning Regions
	5.2.4.1 Dual-core Example Link Files
	5.2.4.2 Secure Boot Example Link Files

	6 Revision

